Regge behavior \& GPDs at the border point $x=\xi$ A.V. Radyushkin

Physics Department, Old Dominion University \&
Theory Center, Jefferson Lab

Talk at GARYFEST, October 29,2010

Hadrons in Terms of Quarks and Gluons

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Situation in hadronic physics:

- All relevant particles established
- QCD Lagrangian is known
- Need to understand how QCD works

How to relate hadronic states $|p, s\rangle$
to quark and gluon fields $q\left(z_{1}\right), q\left(z_{2}\right), \ldots$?
Standard way: use matrix elements

$$
\langle 0| \bar{q}_{\alpha}\left(z_{1}\right) q_{\beta}\left(z_{2}\right)|M(p), s\rangle,\langle 0| q_{\alpha}\left(z_{1}\right) q_{\beta}\left(z_{2}\right) q_{\gamma}\left(z_{3}\right)|B(p), s\rangle
$$

Meson-quark matrix element

Baryon-quark matrix element

- Can be interpreted as hadronic wave functions

Light-cone formalism

Regge \& GPD@x $=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- Describe hadron by Fock components in infinite-momentum frame

For nucleon

$$
\begin{aligned}
|P\rangle & =\left|q\left(x_{1} P, k_{1 \perp}\right) q\left(x_{2} P, k_{2 \perp}\right) q\left(x_{3} P, k_{3 \perp}\right)\right\rangle \\
& +|q q q G\rangle+|q q q \bar{q} q\rangle+|q q q G G\rangle+\ldots
\end{aligned}
$$

- x_{i} : momentum fractions

$$
\sum_{i} x_{i}=1
$$

- $k_{i \perp}$: transverse momenta

$$
\sum_{i} k_{i \perp}=0
$$

Problems of LC Formalism

Regge \& GPD@ $x=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- In principle: Solving bound-state equation

$$
H|P\rangle=E|P\rangle
$$

one gets $|P\rangle$ which gives complete information about hadron structure

- In practice: Equation (involving infinite number of Fock components) has not been solved and is unlikely to be solved in near future
- Experimentally: LC wave functions are not directly accessible
- Way out: Description of hadron structure in terms of phenomenological functions

Phenomenological Functions

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model
"Old" functions:

- Form Factors
- Usual Parton Densities
- Distribution Amplitudes
"New" functions:
Generalized
Parton Distributions
(GPDs)

$$
\begin{aligned}
& \text { GPDs }=\text { Hybrids of } \\
& \text { Form Factors, Parton Densities and } \\
& \text { Distribution Amplitudes }
\end{aligned}
$$

"Old" functions

are limiting cases of "new" functions

Form Factors

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

Form factors are defined through matrix elements

of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

$$
\begin{aligned}
& \left\langle p^{\prime}, s^{\prime}\right| J^{\mu}(0)|p, s\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}(t)+\frac{\Delta^{\nu} \sigma^{\mu \nu}}{2 m_{N}} F_{2}(t)\right] u(p, s) \\
& \left(\Delta=p-p^{\prime}, t=\Delta^{2}\right)
\end{aligned}
$$

- Electromagnetic current

$$
J^{\mu}(z)=\sum_{f(\text { lavor })} e_{f} \bar{\psi}_{f}(z) \gamma^{\mu} \psi_{f}(z)
$$

- Helicity non-flip form factor

$$
F_{1}(t)=\sum_{f} e_{f} F_{1 f}(t)
$$

- Helicity flip form factor

$$
F_{2}(t)=\sum_{f} e_{f} F_{2 f}(t)
$$

Usual Parton Densities

Regge \& GPD@x=$=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Parton Densities are defined through forward matrix elements
 of quark/gluon fields separated by lightlike distances

Unpolarized quarks case:

$$
\begin{gathered}
\left.\langle p| \bar{\psi}_{a}(-z / 2) \gamma^{\mu} \psi_{a}(z / 2)|p\rangle\right|_{z^{2}=0} \\
=2 p^{\mu} \int_{0}^{1}\left[e^{-i x(p z)} f_{a}(x)-e^{i x(p z)} f_{\bar{a}}(x)\right] d x
\end{gathered}
$$

Momentum space interpretation

$f_{a(\bar{a})}(x)$ is probability
to find $a(\bar{a})$ quark with momentum $x p$

Local limit $z=0$
\Rightarrow sum rule
$\int_{0}^{1}\left[f_{a}(x)-f_{\bar{a}}(x)\right] d x=N_{a}$ for valence quark numbers

Nonforward Parton Densities
 (Zero Skewness GPDs)

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Combine form factors with parton densities

$$
F_{1}(t)=\sum_{a} F_{1 a}(t)
$$

$$
F_{1 a}(t)=\int_{0}^{1} \mathcal{F}_{1 a}(x, t) d x
$$

Flavor components of form factors

$$
\mathcal{F}_{1 a}(x, t) \equiv e_{a}\left[\mathcal{F}_{a}(x, t)-\mathcal{F}_{\bar{a}}(x, t)\right]
$$

Forward limit $t=0$

$$
\mathcal{F}_{a(\bar{a})}(x, t=0)=f_{a(\bar{a})}(x)
$$

Interplay between x and t dependences

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

Simplest factorized ansatz

$$
\mathcal{F}_{a}(x, t)=f_{a}(x) F_{1}(t)
$$ satisfies both forward and local constraints

Forward constraint

$$
\mathcal{F}_{a}(x, t=0)=f_{a}(x)
$$

Local constraint

$$
\int_{0}^{1}\left[\mathcal{F}_{a}(x, t)-\mathcal{F}_{\bar{a}}(x, t)\right] d x=F_{1 a}(t)
$$

Reality is more complicated:

LC wave function with Gaussian k_{\perp} dependence

$$
\Psi\left(x_{i}, k_{i \perp}\right) \sim \exp \left[-\frac{1}{\lambda^{2}} \sum_{i} \frac{k_{i \perp}^{2}}{x_{i}}\right]
$$

suggests

$$
\mathcal{F}_{a}(x, t)=f_{a}(x) e^{\bar{x} t / 2 x \lambda^{2}}
$$

$f_{a}(x)=$ experimental densities

Adjusting λ^{2} to provide

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle \approx(300 \mathrm{MeV})^{2}
\end{aligned}
$$

Regge-type models for NPDs ($\xi=0$ GPDs)

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
"Regge" improvement:

$$
\begin{aligned}
& f(x) \sim x^{-\alpha(0)} \\
\Rightarrow & \mathcal{F}(x, t) \sim x^{-\alpha(t)} \\
\Rightarrow & \mathcal{F}(x, t)=f(x) x^{-\alpha^{\prime} t}
\end{aligned}
$$

Accomodating quark counting rules:

$$
\begin{aligned}
\mathcal{F}(x, t) & =\left.f(x) x^{-\alpha^{\prime} t(1-x)}\right|_{x \rightarrow 1} \\
& \sim f(x) e^{\alpha^{\prime}(1-x)^{2} t}
\end{aligned}
$$

NPDs
DAs
GPDs
DVCS
DDs
Models
Note: no pQCD involved in these counting rules!
Does not change small- x behavior but provides

$$
\begin{aligned}
& \left.f(x)\right|_{x \rightarrow 1} \text { vs. }\left.F(t)\right|_{t \rightarrow \infty} \text { interplay: } \\
& f(x) \sim(1-x)^{n} \Rightarrow F_{1}(t) \sim t^{-(n+1) / 2}
\end{aligned}
$$

Extra $1 / t$ for $F_{2}(t)$
can be produced by taking

$$
\mathcal{E}_{a}(x, t) \sim(1-x)^{2} \mathcal{F}_{a}(x, t)
$$

for "magnetic" NPDs

More general:

$$
\mathcal{E}_{a}(x, t) \sim(1-x)^{\eta_{a}} \mathcal{F}_{a}(x, t)
$$

Fit : $\eta_{u}=1.6, \eta_{d}=1$

Distribution Amplitudes

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Baryon DA $\varphi\left(x_{1}, x_{2}, x_{3}\right)$

Meson DA $\varphi\left(x_{1} x_{2}\right)$

DAs may be interpreted as

- LC wave functions integrated over transverse momentum
- Matrix elements $\langle 0| \mathcal{O}|p\rangle$ of LC operators

For pion $\left(\pi^{+}\right)$:

$$
\begin{aligned}
& \left.\langle 0| \bar{\psi}_{d}(-z / 2) \gamma_{5} \gamma^{\mu} \psi_{u}(z / 2)\left|\pi^{+}(p)\right\rangle\right|_{z^{2}=0} \\
& =i p^{\mu} f_{\pi} \int_{-1}^{1} e^{-i \alpha(p z) / 2} \varphi_{\pi}(\alpha) d \alpha
\end{aligned}
$$

with $\alpha=x_{1}-x_{2}$ or $x_{1}=(1+\alpha) / 2, x_{2}=(1-\alpha) / 2$

Models for Meson Distribution Amplitudes

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Simple power models, $r=0,1,1000$

Functional Form:

$$
\varphi_{r}(x) \sim[x(1-x)]^{r} \text { or } \phi_{r}(\alpha) \sim\left(1-\alpha^{2}\right)^{r}
$$

Hard Electroproduction Processes: Path to GPDs

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

Deeply Virtual Photon and Meson Electroproduction:
Attempt to use perturbative QCD to extract new information about hadronic structure

pQCD Factorization

Hard kinematics:
Q^{2} is large
$s \equiv(p+q)^{2}$ is large
$Q^{2} / 2(p q) \equiv x_{\mathrm{Bj}}$ is fixed
$t \equiv\left(p-p^{\prime}\right)^{2}$ is small

Deeply Virtual Compton Scattering

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

Kinematics

Total CM energy $s=(q+p)^{2}=\left(q^{\prime}+p^{\prime}\right)^{2}$
LARGE: Above resonance region Initial photon virtuality $Q^{2}=-q^{2}$

LARGE ($>1 \mathrm{GeV}^{2}$)

Invariant momentum transfer $t=\Delta^{2}=\left(p-p^{\prime}\right)^{2}$
SMALL $\left(\ll 1 \mathrm{GeV}^{2}\right)$

- Picture in $\gamma^{*} N$ CM frame

- Virtual photon momentum $q=q^{\prime}-x_{B j} p$ has component $-x_{B j} p$ canceled by momentum transfer Δ
- \Rightarrow Momentum transfer Δ has longitudinal component

$$
\Delta^{+}=x_{B j} p^{+}, \quad x_{B j}=\frac{Q^{2}}{2(p q)}
$$

- "Skewed" Kinematics: $\Delta^{+}=\zeta p^{+}$, with $\zeta=x_{B j}$ for DVCS

Parton Picture for DVCS

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids

FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Nonforward parton distribution

$\mathcal{F}_{\zeta}(X ; t)$ depends on
$X:$ fraction of p^{+}
ζ : skeweness
t : momentum transfer

- In forward $\Delta=0$ limit

$$
\mathcal{F}_{\zeta=0}^{a}(X, t=0)=f_{a}(X)
$$

- Note: $\mathcal{F}_{\zeta=0}^{a}(X, t=0)$ comes from Exclusive DVCS Amplitude, while $f_{a}(X)$ comes from Inclusive DIS Cross Section
- Zero skeweness $\zeta=0$ limit for nonzero t corresponds to nonforward parton densities

$$
\mathcal{F}_{\zeta=0}^{a}(X, t)=\mathcal{F}^{a}(X, t)
$$

- Local limit: relation to form factors

$$
(1-\zeta / 2) \int_{0}^{1} \mathcal{F}_{\zeta}^{a}(X, t) d X=F_{1}^{a}(t)
$$

Off-forward Parton Distributions

Regge \& GPD@ $x=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Momentum fractions taken wrt average momentum $P=\left(p+p^{\prime}\right) / 2$

4 functions of x, ξ, t :

$$
H, E, \widetilde{H}, \widetilde{E}
$$

wrt hadron/parton helicity flip

$$
+/+,-/+,+/-,-/-
$$

- Skeweness $\xi \equiv \Delta^{+} / 2 P^{+}$is $\xi=x_{B j} /\left(2-x_{B j}\right)$
- 3 regions:

$$
\begin{array}{ll}
\xi<x<1 & \sim \text { quark distribution } \\
-1<x<-\xi & \sim \text { antiquark distribution } \\
-\xi<x<\xi & \sim \text { distribution amplitude for } N \rightarrow \bar{q} q N^{\prime}
\end{array}
$$

Modeling GPDs

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Two approaches are used:

- Direct calculation in specific dynamical models: bag model, chiral soliton model, light-cone formalism, etc.
- Phenomenological construction based on relation of GPDs to usual parton densities $f_{a}(x), \Delta f_{a}(x)$ and form factors $F_{1}(t), F_{2}(t), G_{A}(t), G_{P}(t)$
- Formalism of Double Distributions is often used to get self-consistent phenomenological models

Meson exchange contribution

- GPD $\widetilde{E}(x, \xi ; t)$ is related to pseudoscalar form factor $G_{P}(t)$ and is dominated for small t by pion pole term $1 /\left(t-m_{\pi}^{2}\right)$
- Dependence of $\widetilde{E}(x, \xi ; t)$ on x is given by pion distribution amplitude $\varphi_{\pi}(\alpha)$ taken at $\alpha=x / \xi$

Double Distributions

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion
"Superposition" of P^{+}and r^{+}momentum fluxes

Like distribution function

Like distribution amplitude

Connection with OFPDs

Basic relation between fractions

$$
x=\beta+\xi \alpha
$$

- Forward limit $\xi=0, t=0$ gives usual parton densities

$$
\int_{-1+|\beta|}^{1-|\beta|} f_{a}(\beta, \alpha ; t=0) d \alpha=f_{a}(\beta)
$$

Getting GPDs from DDs

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

DDs live on rhombus $|\alpha|+|\beta| \leq 1$

"Munich" symmetry:

$$
f_{a}(\beta, \alpha ; t)=f_{a}(\beta,-\alpha ; t)
$$

Converting DDs into GPDs

GPDs $H(x, \xi)$ are obtained from DDs $f(\beta, \alpha)$
by scanning DDs at ξ-dependent angles
\Rightarrow DD-tomography

Illustration of DD \rightarrow GPD conversion

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

Factorized model for DDs:

(\sim usual parton density in β-direction) \otimes (\sim distribution amplitude in α-direction)

Toy model for double distribution

$$
f(\beta, \alpha)=3\left[(1-|\beta|)^{2}-\alpha^{2}\right] \theta(|\alpha|+|\beta| \leq 1)
$$

GPD $H(x, \xi)$ resulting from toy DD

- For $\xi=0$ reduces to usual parton density
- For $\xi=1$ has shape like meson distribution amplitude

Realistic Model for GPDs based on DDs

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conciusion

- DD modeling misses terms invisible in the forward limit:
- Meson exchange contributions
- D-term, which can be interpreted as σ exchange
- Inclusion of D-term induces nontrivial behavior in $|x|<\xi$ region

Meson and D-term terms

Meson exchange contribution

Structure of D-term contribution
DD + D-term model

- Profile model for DDs: $f_{a}(\beta, \alpha)=f_{a}(\beta) h_{a}(\beta, \alpha)$

Normalization

$$
\int_{-1}^{1} d \alpha h(\beta, \alpha)=1
$$

Guarantees forward limit

$$
\int_{-1}^{1} d \alpha f(\beta, \alpha)=f(\beta)
$$

DD Profile

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

- General form of model profile $h(\beta, \alpha)=\frac{\Gamma(2+2 b)}{2^{2 b+1} \Gamma^{2}(1+b)} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]^{b}}{(1-|\beta|)^{2 b+1}}$
- Power b is parameter of the model
- $b=\infty$ gives $h(\beta, \alpha)=\delta(\alpha)$ and $H(x, \xi)=f(x)$
- Single-Spin Asymmetry

$$
A_{L U}(\varphi)=\frac{d \sigma^{\uparrow}-d \sigma \downarrow}{d \sigma \uparrow+d \sigma \downarrow}
$$

HERMES Data

JLab CLAS Data

- Models:

Red: $\quad b_{\text {val }}=1 \quad b_{\text {sea }}=\infty$
Green: $b_{\text {val }}=1 \quad b_{\text {sea }}=1$
Blue: $\quad b_{\text {val }}=\infty \quad b_{\text {sea }}=\infty$

Models with Regge behavior of $f(\beta)$

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

- Szczepaniak et al: constructed model equivalent to

$$
H(x, \xi)=x \int_{\Omega} d \beta \frac{f(\beta)}{\beta(1-|\beta|)} \delta(x-\beta-\xi \alpha)
$$

- Corresponds to $b=0$ flat profile $h(\beta, \alpha)=\frac{1}{2(1-|\beta|)}$
- Regge ansatz $f(\beta) \sim|\beta|^{-a}$ gives singularity at border point $x=\xi$

$$
\left.H(x, \xi)\right|_{x \sim \xi} \sim\left|\frac{x-\xi}{1-\xi}\right|^{-a} \quad \operatorname{Bad}: A_{\mathrm{DVCS}} \sim \int_{-1}^{1} \frac{d x}{x-\xi+i \epsilon} H(x, \xi)
$$

- Flat profile follows from hard $1 / k_{i}^{2}$ behavior of parton-hadron amplitude $T\left(p_{1}, p_{2} ; k_{1}, k_{2}\right)$
- Changing to faster $\left(1 / k_{i}^{2}\right)^{b+1}$ fall-off gives b-profile
- No singularities with $b \geq a$
$\mathrm{b}=1$ DD with $a=0.5$ Regge PDFs

Early model with Regge behavior of $f(\beta)$

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- Direct model $H(x, \xi)=\int_{\Omega} d \beta f(\beta) h_{b}(\beta, \alpha) \delta(x-\beta-\xi \alpha)$ with $b=1$

$$
\begin{aligned}
\left.H(x, \xi)\right|_{|x| \geq \xi} & =\frac{1}{\xi^{3}}\left(1-\frac{a}{4}\right)\left\{\left[(2-a) \xi(1-x)\left(x_{+}^{2-a}+x_{-}^{2-a}\right)\right.\right. \\
& \left.\left.+\left(\xi^{2}-x\right)\left(x_{+}^{2-a}-x_{-}^{2-a}\right)\right] \theta(x)-(x \rightarrow-x)\right\} \\
\left.H(x, \xi)\right|_{|x| \leq \xi} & =\frac{1}{\xi^{3}}\left(1-\frac{a}{4}\right)\left\{x_{+}^{2-a}\left[(2-a) \xi(1-x)+\left(\xi^{2}-x\right)\right]\right. \\
& -(x \rightarrow-x)\}
\end{aligned}
$$

- $f(\beta) \sim \beta^{-a}(1-\beta)^{3}$
- $x_{+}=(x+\xi) /(1+\xi)$
- $x_{-}=(x-\xi) /(1-\xi)$
- $\sim|x-\xi|^{2-a}+\mathrm{const}$ behavior for $x \sim \xi$

$b=1$ DD with Regge PDFs

$$
\xi=0.2,0.3,0.5,0.7,0.9
$$

Basics of the "Regge-blob" model

- Quark-hadron scattering amplitude is modeled by

$$
\gamma_{\mu} k^{\mu} \frac{1}{\left(m_{1}^{2}-(k+r)^{2}\right)^{n_{1}+1}} \frac{1}{\left(m_{2}^{2}-(k-r)^{2}\right)^{n_{2}+1}} T\left((p-k)^{2}\right)
$$

- Dirac structure $\gamma_{\mu} k^{\mu}$ is necessary to provide EM gauge invariance of DVCS amplitude
- Modified propagators soften quark-hadron vertices

Combining with the dispersion relation

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- Model is based on

$$
\begin{aligned}
& H(x, \xi) P^{+} \sim \int k^{+} \frac{\delta\left(x-k^{+} / P^{+}\right) d^{4} k}{\left[m_{1}^{2}-(k+r)^{2}\right]^{N_{1}+1}\left[m_{2}^{2}-(k-r)^{2}\right]^{N_{2}+1}} \\
& \times \int_{0}^{\infty} d \sigma \rho(\sigma)\left\{\frac{1}{\sigma-(P-k)^{2}}-\frac{1}{\sigma}\right\}
\end{aligned}
$$

- First line: modified propagators providing softer quark-hadron vertices (eventually $N_{1}=N_{2} \equiv N$) can be obtained by $\left(d / d m_{i}^{2}\right)^{N_{i}}$
- Second line: quark-hadron scattering amplitude in (subtracted) dispersion relation representation
- Choosing $\rho(\sigma)$ to get Regge $\sim s^{\alpha}$ behavior in $s=(P-k)^{2}$

How profile factor appears

Regge \& GPD@ $x=\xi$

GPDs=Hybrids
FFs
PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model

- In Feynman parameters:

$$
\begin{aligned}
H(x, \xi) \sim & \int_{0}^{\infty} d \sigma \rho(\sigma) \int_{0}^{1} \frac{\left(x_{3} P^{+}+\left(x_{2}-x_{1}\right) r^{+}\right) / P^{+}}{\left(x_{3} \sigma+x_{1} m_{1}^{2}+x_{2} m_{2}^{2}\right)^{n_{1}+n_{2}+1}} x_{1}^{n_{1}} x_{2}^{n_{2}}[d x] \\
& \left\{\delta\left(x-x_{3}-\left(x_{2}-x_{1}\right) \xi\right)-\frac{\delta\left(x-\left(x_{2}-x_{1}\right) \xi\right)}{\left(x_{1}+x_{2}\right)^{2}}\right\}
\end{aligned}
$$

- $[d x]=d x_{1} d x_{2} d x_{3} \delta\left(1-x_{1}-x_{2}-x_{3}\right)$
- In DD representation we should have $\beta P^{+}+\alpha r^{+}$, which gives

$$
x_{1}=(1-\beta-\alpha) / 2, \quad x_{2}=(1-\beta+\alpha) / 2
$$

- For equal $N_{i}=N$: profile factor

$$
\left(x_{1} x_{2}\right)^{N}=\left[(1-\beta)^{2}-\alpha^{2}\right]^{N} / 2^{2 N}
$$

- Note: taking $m_{1}=m_{2}=m$ before differentation gives $\left(x_{1}+x_{2}\right)^{2 N}$ after it, i.e. $(1-\beta)^{2 N} \Rightarrow$ flat profile in α direction!

Criticism of "Indiana model"

Regge \& GPD@ $x=\xi$

- Little bit of algebra:

Softened model

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- In GPD variables $\beta P^{+}+\alpha r^{+}=x P^{+}$, so

$$
\begin{aligned}
H(x, \xi) \sim \frac{x}{2^{2 n+1}} \int_{0}^{\infty} d \sigma \rho(\sigma) & \int_{0}^{1} d \beta \int_{-1+\beta}^{1-\beta} d \alpha \frac{\left[(1-\beta)^{2}-\alpha^{2}\right]^{n}}{\left(\beta \sigma+(1-\beta) m^{2}\right)^{2 n+1}} \\
& \left\{\delta(x-\beta-\alpha \xi)-\frac{\delta(x-\alpha \xi)}{(1-\beta)^{2}}\right\}
\end{aligned}
$$

- Usual (forward) parton distribution corresponds to $\xi=0$

$$
\begin{aligned}
H(x, \xi=0)= & \frac{x}{2^{2 n+1}} \int_{0}^{\infty} d \sigma \rho(\sigma) \int_{0}^{1} d \beta \int_{-1+\beta}^{1-\beta} \frac{\left[(1-\beta)^{2}-\alpha^{2}\right]^{n} d \alpha}{\left(\beta \sigma+(1-\beta) m^{2}\right)^{2 n+1}} \\
& \times\left\{\delta(x-\beta)-\frac{\delta(x)}{(1-\beta)^{2}}\right\}
\end{aligned}
$$

- Note: $x \delta(x)=0$, thus

$$
f(x)=\frac{(n!)^{2}}{(2 n+1)!} x(1-x)^{(2 n+1} \int_{0}^{\infty} \frac{d \sigma \rho(\sigma)}{\left(x \sigma+(1-x) m^{2}\right)^{2 n+1}}
$$

Softened model, contd.

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- Substituting σ-integral by forward distribution gives for GPD

$$
\begin{aligned}
& H(x, \xi)=\frac{x}{2^{2 n+1}} \frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1} d \beta \int_{-1+\beta}^{1-\beta} d \alpha \frac{\left[(1-\beta)^{2}-\alpha^{2}\right]^{n}}{(1-\beta)^{2 n+1}} \frac{f(\beta)}{\beta} \\
& \times\left\{\delta(x-\beta-\alpha \xi)-\frac{\delta(x-\alpha \xi)}{(1-\beta)^{2}}\right\}
\end{aligned}
$$

- Normalized profile function:

$$
h_{n}(\beta, \alpha) \equiv \frac{1}{2^{2 n+1}} \frac{(2 n+1)!}{(n!)^{2}} \frac{\left[(1-\beta)^{2}-\alpha^{2}\right]^{n}}{(1-\beta)^{2 n+1}}
$$

- Result:

$$
\begin{aligned}
\frac{H(x, \xi)}{x}= & \int_{0}^{1} d \beta \int_{-1+\beta}^{1-\beta} d \alpha \frac{f(\beta)}{\beta} h_{n}(\beta, \alpha) \\
& \times\left\{\delta(x-\beta-\alpha \xi)-\frac{\delta(x-\alpha \xi)}{(1-\beta)^{2}}\right\}
\end{aligned}
$$

y

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results

- Regularized DD ansatz:

$$
\begin{aligned}
\frac{H(x, \xi)}{x}= & \int_{0}^{1} d \beta \int_{-1+\beta}^{1-\beta} d \alpha \delta(x-\beta-\alpha \xi) \\
& \times\left\{f(\beta, \alpha)-\delta(\beta) \int_{0}^{1-|\alpha|} d \gamma \frac{f(\gamma, \alpha)}{(1-\gamma)^{2}}\right\}
\end{aligned}
$$

with

$$
f(\beta, \alpha)=f(\beta) h_{n}(\beta, \alpha) / \beta
$$

- This representation includes D-term

$$
D(\alpha)=\alpha \int_{0}^{1-|\alpha|} d \beta \frac{f(\beta)}{\beta} h(\beta, \alpha)\left\{1-\frac{1}{(1-\beta)^{2}}\right\}
$$

- Total double distribution

$$
F(\beta, \alpha)=\left[f(\beta, \alpha]_{+}+\delta(\beta) D(\alpha)\right.
$$

- Usual "plus" prescription

$$
[f(\beta, \alpha)]_{+} \equiv f(\beta, \alpha)-\delta(\beta) \int_{0}^{1-|\alpha|} d \gamma f(\gamma, \alpha)
$$

Results for $n=1$ profile $\sim\left[(1-\beta)^{2}-\alpha^{2}\right]$

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion
$H(x, \xi) ; \xi=0.05,0.1,0.15,0.2,0.25$

Comparison of GPD and D-term

$$
\begin{aligned}
& \xi=0.5
\end{aligned}
$$

D-term

Difference of GPD and D-term

Results for $n=2$ profile $\sim\left[(1-\beta)^{2}-\alpha^{2}\right]^{2}$

Regge \& $\mathrm{GPD} @ x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

$$
H(x, \xi) ; \xi=0.1,0.3,0.5,0.7,0.9
$$

- First derivative $d H(x, \xi) / d x$ is continuous at $x=\xi$

Regge \& GPD@ $x=\xi$

GPDs=Hybrids FFs

PDFs
NPDs
DAs
GPDs
DVCS
DDs
Models
Regge
Blob model
Truly softened model

Results
Conclusion

Happy Birthday Gary!

