

Regge & GPD@ $x = \xi$

GPDs=Hyb FFs PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

Regge behavior & GPDs at the border point $x = \xi$ A.V. Radyushkin

Physics Department, Old Dominion University & Theory Center, Jefferson Lab

Talk at GARYFEST, October 29,2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Baryon–quark matrix element

Light-cone formalism

Regge & GPD@ $x = \xi$

- GPDs=Hybrids
- FFs
- PDF
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softened model
- Results
- Conclusion

• Describe hadron by Fock components in infinite-momentum frame

For nucleon

$$|P\rangle = |q(x_1P, k_{1\perp}) q(x_2P, k_{2\perp}) q(x_3P, k_{3\perp})\rangle + |qqqG\rangle + |qqq\bar{q}q\rangle + |qqqGG\rangle + \dots$$

• x_i : momentum fractions

$$\sum_{i} x_i = 1$$

• $k_{i\perp}$: transverse momenta

$$\sum_{i} k_{i\perp} = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Problems of LC Formalism

 $\begin{array}{l} \operatorname{Regge} \& \\ \operatorname{GPD} @ x = \xi \end{array}$

GPDs=Hybrids

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob model

Truly softened model

Results

Conclusion

In principle: Solving bound-state equation

 $H|P\rangle = E|P\rangle$

one gets $\left|P\right\rangle$ which gives complete information about hadron structure

- In practice: Equation (involving infinite number of Fock components) has not been solved and is unlikely to be solved in near future
- Experimentally: LC wave functions are not directly accessible
- Way out: Description of hadron structure in terms of phenomenological functions

Phenomenological Functions

Regge & GPD@ $x = \xi$

GPDs=Hybrids

- FFs
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softene model
- Results
- Conclusion

"Old" functions:

- Form Factors
- Usual Parton Densities
- Distribution Amplitudes

"New" functions:

Generalized Parton Distributions (GPDs)

$\mathsf{GPDs} = \mathsf{Hybrids} \mathsf{of}$

Form Factors, Parton Densities and Distribution Amplitudes

"Old" functions

are limiting cases of "new" functions

Form Factors

Regge & GPD@ $x = \xi$

GPDs=Hybrids

FFs

PDFs

NPDs

ΠΔe

CDD

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

Form factors are defined through matrix elements

of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

$$\langle p', s' | J^{\mu}(0) | p, s \rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(t) + \frac{\Delta^{\nu} \sigma^{\mu\nu}}{2m_N} F_2(t) \right] u(p, s)$$

$$\Delta = p - p', t = \Delta^2)$$

• Electromagnetic current

$$J^{\mu}(z) = \sum_{f(lavor)} e_f \psi_f(z) \gamma^{\mu} \psi_f(z)$$

• Helicity non-flip form factor

$$F_1(t) = \sum_f e_f F_{1f}(t)$$

• Helicity flip form factor

$$F_2(t) = \sum_f e_f F_{2f}(t)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Usual Parton Densities

Regge & GPD@ $x = \xi$

PDFs

Parton Densities are defined through forward matrix elements

of quark/gluon fields separated by lightlike distances

Unpolarized quarks case:

$$\begin{split} \langle \, p \, | \, \bar{\psi}_a(-z/2) \gamma^\mu \psi_a(z/2) \, | \, p \, \rangle \big|_{z^2 = 0} \\ &= 2 p^\mu \int_0^1 \left[e^{-ix(pz)} f_a(x) - e^{ix(pz)} f_{\bar{a}}(x) \right] dx \end{split}$$

Nonforward Parton Densities (Zero Skewness GPDs)

Regge & GPD@ $x = \xi$

GPDs=Hybi FFs PDFs NPDs DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

Combine form factors with parton densities

$F_1(t) = \sum_a F_{1a}(t)$ $F_{1a}(t) = \int_0^1 \mathcal{F}_{1a}(x, t) \, dx$

ヘロン 人間 とくほとくほと

ъ

Flavor components of form factors $\mathcal{F}_{1a}(x,t) \equiv e_a[\mathcal{F}_a(x,t) - \mathcal{F}_{\bar{a}}(x,t)]$

Forward limit t = 0 $\mathcal{F}_{a(\bar{a})}(x, t = 0) = f_{a(\bar{a})}(x)$

Interplay between x and t dependences

Regge & GPD@ $x = \xi$

GPDs=Hybrid

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softene model

Results

Conclusion

Simplest factorized ansatz

 $\mathcal{F}_a(x,t) = f_a(x)F_1(t)$ satisfies both forward and local constraints

Forward constraint

$$\mathcal{F}_a(x,t=0) = f_a(x)$$

Local constraint

$$\int_0^1 [\mathcal{F}_a(x,t) - \mathcal{F}_{\bar{a}}(x,t)] dx = F_{1a}(t)$$

Reality is more complicated:

LC wave function with Gaussian k_{\perp} dependence $\Psi(x_i, k_{i\perp}) \sim \exp\left[-\frac{1}{\lambda^2}\sum_i \frac{k_{i\perp}^2}{x_i}\right]$ suggests $\mathcal{F}_a(x, t) = f_a(x)e^{\bar{x}t/2x\lambda^2}$

 $f_a(x)$ =experimental densities

Adjusting λ^2 to provide $\langle k_{\perp}^2 \rangle \approx (300 \text{MeV})^2$ $\begin{cases} \frac{25}{2} & F_{\uparrow}(0)/D(0) \\ \frac{25}{1.75} & F_{\downarrow}(0)/D(0) \\ \frac{25}{1.75} & F_{\downarrow}(0)/D(0)/D(0) \\ \frac{25}{1.75} & F_{\downarrow}(0)/D(0)/D(0) \\ \frac{25}{1.75} & F_{\downarrow}(0)/D(0$

Regge-type models for NPDs ($\xi = 0$ GPDs)

Regge & GPD@ $x = \xi$

GPDs=Hybrids

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

"Regge" improvement:

$$\begin{split} f(x) &\sim x^{-\alpha(0)} \\ \Rightarrow \mathcal{F}(x,t) &\sim x^{-\alpha(t)} \\ \Rightarrow \mathcal{F}(x,t) &= f(x) x^{-\alpha' t} \end{split}$$

Accomodating quark counting rules:

$$\begin{aligned} \mathcal{F}(x,t) &= f(x) x^{-\alpha' t(1-x)} |_{x \to 1} \\ &\sim f(x) e^{\alpha' (1-x)^2 t} \end{aligned}$$

Does not change small-x behavior but provides

 $f(x)|_{x \to 1}$ vs. $F(t)|_{t \to \infty}$ interplay: $f(x) \sim (1-x)^n \Rightarrow F_1(t) \sim t^{-(n+1)/2}$ Note: no pQCD involved in these counting rules!

Extra 1/t for $F_2(t)$

can be produced by taking $\mathcal{E}_a(x,t)\sim (1-x)^2\mathcal{F}_a(x,t)$ for "magnetic" NPDs

More general:

$$\begin{split} \mathcal{E}_a(x,t) &\sim (1-x)^{\eta_a} \, \mathcal{F}_a(x,t) \\ \mathsf{Fit}: \eta_u &= 1.6 \;, \; \eta_d = 1 \end{split}$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Regge & GPD@ $x = \xi$

DAs

Distribution Amplitudes

DAs may be interpreted as

LC wave functions integrated over transverse momentum

• Matrix elements $\langle 0 | \mathcal{O} | p \rangle$ of LC operators

For pion (π^+):

١

$$\left\langle 0 \left| \bar{\psi}_d(-z/2)\gamma_5 \gamma^\mu \psi_u(z/2) \left| \pi^+(p) \right\rangle \right|_{z^2 = 0} \right.$$
$$= ip^\mu f_\pi \int_{-1}^1 e^{-i\alpha(pz)/2} \varphi_\pi(\alpha) \, d\alpha$$

with
$$\alpha = x_1 - x_2$$
 or $x_1 = (1 + \alpha)/2, \ x_2 = (1 - \alpha)/2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Hard Electroproduction Processes: Path to GPDs

Regge & GPD@ $x = \xi$

GPDs=Hyb FFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softene model

Results

Conclusion

Deeply Virtual Photon and Meson Electroproduction:

Attempt to use perturbative QCD to extract new information about hadronic structure

pQCD Factorization

k

q Hard, pQCD Soft, GPD

Hard kinematics:

 $\begin{array}{l} Q^2 \text{ is large} \\ s \equiv (p+q)^2 \text{ is large} \\ Q^2/2(pq) \equiv x_{\rm Bj} \text{ is fixed} \\ t \equiv (p-p')^2 \text{ is small} \end{array}$

・ コット (雪) (小田) (コット 日)

Deeply Virtual Compton Scattering

Regge & GPD@ $x = \xi$

- GPDs=Hybrid
- 115
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softene model
- Results
- Conclusion

Kinematics

Total CM energy $s = (q + p)^2 = (q' + p')^2$ LARGE: Above resonance region Initial photon virtuality $Q^2 = -q^2$ LARGE (> 1 GeV²) Invariant momentum transfer $t = \Delta^2 = (p - p')^2$ SMALL (\ll 1GeV²)

• Picture in $\gamma^* N$ CM frame

- Virtual photon momentum q = q' x_{Bj}p has component -x_{Bj}p canceled by momentum transfer Δ
- \Rightarrow Momentum transfer Δ has longitudinal component

$$\Delta^+ = x_{Bj}p^+$$
, $x_{Bj} = \frac{Q^2}{2(pq)}$

• "Skewed" Kinematics: $\Delta^+ = \zeta p^+$, with $\zeta = x_{Bj}$ for DVCS

Parton Picture for DVCS

Regge & GPD@ $x = \xi$

- GPDs=Hybrids
- FFs
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softened model
- Results
- Conclusion

Nonforward parton distribution

- $\mathcal{F}_{\zeta}(X;t)$ depends on *X* : fraction of p^+
- ζ : skeweness
- t: momentum transfer
- In forward $\Delta = 0$ limit

$$\mathcal{F}^a_{\zeta=0}(X,t=0) = f_a(X)$$

- Note: $\mathcal{F}_{\zeta=0}^{a}(X, t=0)$ comes from Exclusive DVCS Amplitude, while $f_{a}(X)$ comes from Inclusive DIS Cross Section
- Zero skeweness ζ = 0 limit for nonzero t corresponds to nonforward parton densities

$$\mathcal{F}^a_{\zeta=0}(X,t) = \mathcal{F}^a(X,t)$$

Local limit: relation to form factors

$$(1-\zeta/2)\int_0^1 \mathcal{F}^a_\zeta(X,t)\,dX = F^a_1(t)$$

э

Off-forward Parton Distributions

 $\frac{\mathsf{Regge \&}}{\mathsf{GPD}@x = \xi}$

- GPDs=Hybrids
- FFs
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softened model
- Results
- Conclusion

Momentum fractions taken wrt average momentum P = (p + p')/2

4 functions of x, ξ, t : $H, E, \widetilde{H}, \widetilde{E}$ wrt hadron/parton helicity flip +/+, -/+, +/-, -/-

- Skeweness $\xi \equiv \Delta^+/2P^+$ is $\xi = x_{Bj}/(2-x_{Bj})$
- 3 regions:

 $\begin{array}{ll} \xi < x < 1 & \sim \mbox{ quark distribution} \\ -1 < x < -\xi & \sim \mbox{ antiquark distribution} \\ -\xi < x < \xi & \sim \mbox{ distribution amplitude for } N \rightarrow \bar{q}qN' \end{array}$

Modeling GPDs

Regge & GPD@ $x = \xi$

Two approaches are used:

- Direct calculation in specific dynamical models: bag model, chiral soliton model, light-cone formalism, etc.
- Phenomenological construction based on relation of GPDs to usual parton densities $f_a(x)$, $\Delta f_a(x)$ and form factors $F_1(t)$, $F_2(t)$, $G_A(t)$, $G_P(t)$
- Formalism of Double Distributions is often used to get self-consistent phenomenological models

Meson exchange contribution

- GPD $\tilde{E}(x,\xi;t)$ is related to pseudoscalar form factor $G_P(t)$ and is dominated for small t by pion pole term $1/(t - m_{\pi}^2)$
- Dependence of $\widetilde{E}(x,\xi;t)$ on x is given by pion distribution amplitude $\varphi_{\pi}(\alpha)$ taken at $\alpha = x/\xi$

GPDs=H

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softene model

Results

Conclusion

Double Distributions

 $\int_{-1+|\beta|}^{1-|\beta|} f_a(\beta,\alpha;t=0) \, d\alpha = f_a(\beta)$

Getting GPDs from DDs

Regge & GPD@ $x = \xi$

GPDs=Hyb FFs PDFs

NPD

DAs

GPDs

DVCS

DDs

Models Regge

вюр тоае

Iruly softene model

Results

Conclusior

DDs live on rhombus $|\alpha|+|\beta|\leq 1$

"Munich" symmetry:

$$f_a(\beta, \alpha; t) = f_a(\beta, -\alpha; t)$$

Converting DDs into GPDs

GPDs $H(x,\xi)$ are obtained from DDs $f(\beta, \alpha)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ ●注◎

by scanning DDs at ξ -dependent angles

 \Rightarrow DD-tomography

Illustration of DD \rightarrow GPD conversion

Regge & GPD@ $x = \xi$

GPDs=Hybrids

FFs

PDFs

NPDs

DAs

GPDs

פטעם

DDs

Models

Regge

Blob mode

Truly softene model

Results

Conclusion

Factorized model for DDs:

(~ usual parton density in β -direction) \otimes (~ distribution amplitude in α -direction)

Realistic Model for GPDs based on DDs

Regge & GPD@ $x = \xi$

- GPDs=Hybrids
- FFs
- PDFs
- NPDs
- DAs
- CPDo
- _....
- DVCS
- DDs
- Models
- Regge Blob mod
- Truly softene model
- Results
- Conclusion

- DD modeling misses terms invisible in the forward limit:
 - Meson exchange contributions
 - D-term, which can be interpreted as σ exchange
- Inclusion of D-term induces nontrivial behavior in $|x| < \xi$ region

• Profile model for DDs: $f_a(\beta, \alpha) = f_a(\beta)h_a(\beta, \alpha)$

Normalization

$$\int_{-1}^{1} d\alpha \, h(\beta, \alpha) = 1$$

Guarantees forward limit

$$\int_{-1}^{1} d\alpha \, f(\beta, \alpha) = f(\beta)$$

DD Profile

Regge & GPD@ $x = \xi$

- GPDs=Hybrids
- FFs
- PDFs
- NPDs
- DAs
-
- 0.1 20
- DVCS
- DDs
- Models
- Regge
- Blob mode
- Truly softene model
- Results
- Conclusion

- General form of model profile $h(\beta, \alpha) = \frac{\Gamma(2+2b)}{2^{2b+1}\Gamma^2(1+b)} \frac{[(1-|\beta|)^2 \alpha^2]^b}{(1-|\beta|)^{2b+1}}$
- Power b is parameter of the model
- $b = \infty$ gives $h(\beta, \alpha) = \delta(\alpha)$ and $H(x, \xi) = f(x)$
- Single-Spin Asymmetry

$$A_{LU}(\varphi) = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Models:

Red:
$$b_{val} = 1$$
 $b_{sea} = \infty$ Green: $b_{val} = 1$ $b_{sea} = 1$ Blue: $b_{val} = \infty$ $b_{sea} = \infty$

Models with Regge behavior of $f(\beta)$

Regge & GPD@ $x = \xi$

GPDs=Hybrids

- FFs
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models

Regge

- Blob mode
- Truly softene model
- Results
- Conclusion

Szczepaniak et al: constructed model equivalent to

$$H(x,\xi) = x \int_{\Omega} d\beta \, \frac{f(\beta)}{\beta(1-|\beta|)} \, \delta(x-\beta-\xi\alpha)$$

- Corresponds to b = 0 flat profile $h(\beta, \alpha) = \frac{1}{2(1-|\beta|)}$
- Regge ansatz $f(\beta) \sim |\beta|^{-a}$ gives singularity at border point $x = \xi$

$$H(x,\xi)|_{x\sim\xi} \sim \left|\frac{x-\xi}{1-\xi}\right|^{-a} \text{ Bad}: A_{\text{DVCS}} \sim \int_{-1}^{1} \frac{dx}{x-\xi+i\epsilon} H(x,\xi)$$

- Flat profile follows from hard 1/k_i² behavior of parton-hadron amplitude T(p₁, p₂; k₁, k₂)
- Changing to faster $(1/k_i^2)^{b+1}$ fall-off gives *b*-profile
- No singularities with $b \ge a$

with the second

Early model with Regge behavior of f(eta)

Regge & GPD@ $x = \xi$

GPDs=Hybric FFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mod

Truly softene model

Results

Conclusion

Direct model
$$H(x,\xi) = \int_{\Omega} d\beta f(\beta) h_b(\beta,\alpha) \,\delta(x-\beta-\xi\alpha)$$
 with $b=1$

$$\begin{split} H(x,\xi)|_{|x|\geq\xi} &= \frac{1}{\xi^3} \left(1 - \frac{a}{4}\right) \left\{ \left[(2-a)\xi(1-x)(x_+^{2-a} + x_-^{2-a}) \right. \\ &+ (\xi^2 - x)(x_+^{2-a} - x_-^{2-a}) \right] \, \theta(x) - (x \to -x) \right\} \\ H(x,\xi)|_{|x|\leq\xi} &= \frac{1}{\xi^3} \left(1 - \frac{a}{4}\right) \left\{ x_+^{2-a} [(2-a)\xi(1-x) + (\xi^2 - x)] \right. \\ &- (x \to -x) \right\} \end{split}$$

•
$$f(\beta) \sim \beta^{-a} (1-\beta)^3$$

•
$$x_+ = (x+\xi)/(1+\xi)$$

- $x_{-} = (x \xi)/(1 \xi)$
- $\sim |x \xi|^{2-a} + \text{const}$ behavior for $x \sim \xi$

b=1 DD with Regge PDFs $h(x, \xi)$ 1.5 1.5 0.5 0.2 0.4 0.6 0.8 1 x

 $\xi = 0.2, 0.3, 0.5, 0.7, 0.9$

Basics of the "Regge-blob" model

Regge & GPD@ $x = \xi$

GPDs=Hybr

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob model

Truly softened model

Results

Conclusion

Quark-hadron scattering amplitude is modeled by

$$\gamma_{\mu}k^{\mu}\frac{1}{(m_{1}^{2}-(k+r)^{2})^{n_{1}+1}}\frac{1}{(m_{2}^{2}-(k-r)^{2})^{n_{2}+1}}T((p-k)^{2})$$

- Dirac structure $\gamma_{\mu}k^{\mu}$ is necessary to provide EM gauge invariance of DVCS amplitude
 - Modified propagators soften quark-hadron vertices

Combining with the dispersion relation

Regge & GPD@ $x = \xi$

- GPDs=Hybrid
- FFs
- PDFs
- NPDs
- DAs
- GPDe
- -----
- 0000
- DDs
- Models
- Regge

Blob model

Truly softened model

- Results
- Conclusion

Model is based on

$$H(x,\xi) P^{+} \sim \int k^{+} \frac{\delta(x-k^{+}/P^{+}) d^{4}k}{[m_{1}^{2}-(k+r)^{2}]^{N_{1}+1}[m_{2}^{2}-(k-r)^{2}]^{N_{2}+1}}$$
$$\times \int_{0}^{\infty} d\sigma \rho(\sigma) \left\{ \frac{1}{\sigma - (P-k)^{2}} - \frac{1}{\sigma} \right\}$$

• First line: modified propagators providing softer quark-hadron vertices (eventually $N_1 = N_2 \equiv N$) can be obtained by $(d/dm_i^2)^{N_i}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Second line: quark-hadron scattering amplitude in (subtracted) dispersion relation representation
- Choosing $\rho(\sigma)$ to get Regge $\sim s^{\alpha}$ behavior in $s = (P k)^2$

How profile factor appears

 $\frac{\mathsf{Regge \&}}{\mathsf{GPD}@x} = \xi$

GPDs=Hybrid

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob model

Truly softened model

Results

Conclusion

• In Feynman parameters:

$$H(x,\xi) \sim \int_0^\infty d\sigma \,\rho(\sigma) \int_0^1 \frac{(x_3P^+ + (x_2 - x_1)r^+)/P^+}{(x_3\sigma + x_1m_1^2 + x_2m_2^2)^{n_1 + n_2 + 1}} \, x_1^{n_1} \, x_2^{n_2} \, [dx]$$

$$\left\{ \delta \left(x - x_3 - (x_2 - x_1)\xi \right) - \frac{\delta \left(x - (x_2 - x_1)\xi \right)}{(x_1 + x_2)^2} \right\}$$

•
$$[dx] = dx_1 dx_2 dx_3 \delta(1 - x_1 - x_2 - x_3)$$

• In DD representation we should have $\beta P^+ + \alpha r^+$, which gives

$$x_1 = (1 - \beta - \alpha)/2$$
, $x_2 = (1 - \beta + \alpha)/2$

• For equal $N_i = N$: profile factor

$$(x_1 x_2)^N = [(1 - \beta)^2 - \alpha^2]^N / 2^{2N}$$

(ロ) (同) (三) (三) (三) (○) (○)

Note: taking m₁ = m₂ = m before differentation gives (x₁ + x₂)^{2N} after it, i.e. (1 − β)^{2N} ⇒ flat profile in α direction!

Criticism of "Indiana model"

Regge & GPD@ $x = \xi$

Blob model

Little bit of algebra:

$$\begin{pmatrix} \frac{d}{dm^2} \end{pmatrix}^2 \frac{1}{(m^2 - k_1^2)(m^2 - k_2^2)} = \frac{1}{(m^2 - k_1^2)^3(m^2 - k_2^2)} \\ + \frac{2}{(m^2 - k_1^2)^2(m^2 - k_2^2)^2} + \frac{1}{(m^2 - k_1^2)(m^2 - k_2^2)^3}$$

- Note: two terms have unmodified propagators ⇒ no softening of one of the quark-hadron vertices
- But quark-nucleon vertex cannot be pointlike!
- More formal objection: factorization proofs through operator product expansion imply QCD equation of motion γ_μD^μψ_q = 0, while pointlike qN vertex corresponds to γ_μD^μψ_q = Ψ_N
- Stick to model with both quark propagators modified

Softened model

Regge & GPD@ $x = \xi$

GPDs=Hybr FFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

• In GPD variables
$$\beta P^+ + \alpha r^+ = xP^+$$
, so

$$H(x,\xi) \sim \frac{x}{2^{2n+1}} \int_0^\infty d\sigma \,\rho(\sigma) \int_0^1 d\beta \int_{-1+\beta}^{1-\beta} d\alpha \,\frac{[(1-\beta)^2 - \alpha^2]^n}{(\beta\sigma + (1-\beta)m^2)^{2n+1}} \\ \left\{ \delta \left(x - \beta - \alpha\xi\right) - \frac{\delta \left(x - \alpha\xi\right)}{(1-\beta)^2} \right\}$$

• Usual (forward) parton distribution corresponds to $\xi = 0$

$$H(x,\xi=0) = \frac{x}{2^{2n+1}} \int_0^\infty d\sigma \,\rho(\sigma) \int_0^1 d\beta \int_{-1+\beta}^{1-\beta} \frac{[(1-\beta)^2 - \alpha^2]^n \, d\alpha}{(\beta\sigma + (1-\beta)m^2)^{2n+1}} \\ \times \left\{ \delta \left(x-\beta\right) - \frac{\delta \left(x\right)}{(1-\beta)^2} \right\}$$

• Note: $x\delta(x) = 0$, thus

$$f(x) = \frac{(n!)^2}{(2n+1)!} x (1-x)^{(2n+1)} \int_0^\infty \frac{d\sigma \,\rho(\sigma)}{(x\sigma + (1-x)m^2)^{2n+1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Softened model, contd.

- $\frac{\mathsf{Regge \&}}{\mathsf{GPD}@x = \xi}$
- GPDs=Hybric
- FFs
- PDFs
- NPDs
- DAs
- GPDs
- DVCS
- DDs
- Models
- Regge
- Blob mode

Truly softened model

- Results
- Conclusion

• Substituting σ -integral by forward distribution gives for GPD

$$H(x,\xi) = \frac{x}{2^{2n+1}} \frac{(2n+1)!}{(n!)^2} \int_0^1 d\beta \int_{-1+\beta}^{1-\beta} d\alpha \, \frac{[(1-\beta)^2 - \alpha^2]^n}{(1-\beta)^{2n+1}} \, \frac{f(\beta)}{\beta} \\ \times \left\{ \delta \left(x - \beta - \alpha \xi \right) - \frac{\delta \left(x - \alpha \xi \right)}{(1-\beta)^2} \right\}$$

Normalized profile function:

$$h_n(\beta, \alpha) \equiv \frac{1}{2^{2n+1}} \frac{(2n+1)!}{(n!)^2} \frac{[(1-\beta)^2 - \alpha^2]^n}{(1-\beta)^{2n+1}}$$

Result:

$$\frac{H(x,\xi)}{x} = \int_0^1 d\beta \int_{-1+\beta}^{1-\beta} d\alpha \, \frac{f(\beta)}{\beta} \, h_n(\beta,\alpha) \\ \times \left\{ \delta \left(x - \beta - \alpha \xi \right) - \frac{\delta \left(x - \alpha \xi \right)}{(1-\beta)^2} \right\}$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

New version of DD anasatz

Regge & GPD@ $x = \xi$

• Regularized DD ansatz:

$$\begin{aligned} \frac{H(x,\xi)}{x} &= \int_0^1 d\beta \, \int_{-1+\beta}^{1-\beta} d\alpha \, \delta \left(x-\beta-\alpha\xi\right) \\ &\times \left\{ f(\beta,\alpha) - \delta(\beta) \int_0^{1-|\alpha|} d\gamma \, \frac{f(\gamma,\alpha)}{(1-\gamma)^2} \right\} \end{aligned}$$

with

$$f(\beta, \alpha) = f(\beta) h_n(\beta, \alpha) / \beta$$

• This representation includes *D*-term

$$D(\alpha) = \alpha \int_0^{1-|\alpha|} d\beta \, \frac{f(\beta)}{\beta} \, h(\beta, \alpha) \, \left\{ 1 - \frac{1}{(1-\beta)^2} \right\}$$

Total double distribution

$$F(\beta,\alpha) = [f(\beta,\alpha]_+ + \delta(\beta)D(\alpha)$$

• Usual "plus" prescription

$$[f(\beta,\alpha)]_{+} \equiv f(\beta,\alpha) - \delta(\beta) \int_{0}^{1-|\alpha|} d\gamma f(\gamma,\alpha) d\gamma f(\gamma,\alpha) = 0$$

GF DS=Hyb

FFS

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softened model

Results

Conclusion

Results for n = 1 profile $\sim [(1 - \beta)^2 - \alpha^2]$

FFs

PDFs

NPD

DAs

GPDs

DVCS

DDs

Models

Regge

Blob mode

Truly softene model

Results

Conclusion

Comparison of GPD and D-term

Difference of GPD and D-term

20

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Regge & GPD@ $x = \xi$

Conclusion

Happy Birthday Gary!

