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Hadrons in Terms of Quarks and Gluons

Situation in hadronic physics:

All relevant particles established

QCD Lagrangian is known

Need to understand how QCD works

How to relate hadronic states |p, s〉

to quark and gluon fields q(z1) , q(z2) , . . . ?

Standard way: use matrix elements

〈 0 | q̄α(z1) qβ(z2) |M(p), s 〉 , 〈 0 | qα(z1) qβ(z2) qγ(z3)|B(p), s 〉

Can be interpreted as hadronic wave functions
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Light-cone formalism

Describe hadron by Fock components in
infinite-momentum frame

For nucleon

|P 〉 = |q(x1P, k1⊥) q(x2P, k2⊥) q(x3P, k3⊥)〉
+ |qqqG〉+ |qqqq̄q〉+ |qqqGG〉+ . . .

xi : momentum fractions∑
i

xi = 1

ki⊥: transverse momenta∑
i

ki⊥ = 0
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Problems of LC Formalism

In principle: Solving bound-state equation

H|P 〉 = E|P 〉

one gets |P 〉 which gives complete information about
hadron structure
In practice: Equation (involving infinite number of Fock
components) has not been solved and is unlikely to be
solved in near future
Experimentally: LC wave functions are not directly
accessible
Way out: Description of hadron structure in terms of
phenomenological functions
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Phenomenological Functions

“Old” functions:
Form Factors
Usual Parton Densities
Distribution Amplitudes

“New” functions:
Generalized
Parton Distributions
(GPDs)

GPDs = Hybrids of
Form Factors, Parton Densities and
Distribution Amplitudes

“Old” functions
are limiting cases of “new” functions
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Form Factors

Form factors are defined through matrix elements

of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

〈 p′, s′ | Jµ(0) | p, s 〉 = ū(p′, s′)
[
γµF1(t) + ∆νσµν

2mN
F2(t)

]
u(p, s)

(∆ = p− p′, t = ∆2)

Electromagnetic current
Jµ(z) =

∑
f(lavor) ef ψ̄f (z)γµψf (z)

Helicity non-flip form factor
F1(t) =

∑
f efF1f (t)

Helicity flip form factor
F2(t) =

∑
f efF2f (t)
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Usual Parton Densities

Parton Densities are defined through
forward matrix elements
of quark/gluon fields separated by
lightlike distances

z/2−z/2

p p

Unpolarized quarks case:

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉∣∣
z2=0

= 2pµ
∫ 1

0

[
e−ix(pz)fa(x)− eix(pz)fā(x)

]
dx

Momentum space
interpretation

xpxp

pp

fa(ā)(x) is
probability

to find a (ā) quark
with momentum xp

Local limit z = 0
⇒ sum rule∫ 1

0
[fa(x)− fā(x)] dx = Na

for valence quark
numbers
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(Zero Skewness GPDs)

Combine form factors with
parton densities

F1(t) =
∑
a

F1a(t)

F1a(t) =
∫ 1

0
F1a(x, t) dx

Flavor components of form factors

F1a(x, t) ≡ ea[Fa(x, t)−Fā(x, t)]

Forward limit t = 0
Fa(ā)(x, t = 0) = fa(ā)(x)
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Interplay between x and t dependences

Simplest factorized ansatz

Fa(x, t) = fa(x)F1(t)
satisfies both forward and
local constraints

Forward constraint
Fa(x, t = 0) = fa(x)

Local constraint∫ 1
0 [Fa(x, t)−Fā(x, t)]dx = F1a(t)

Reality is more complicated:
LC wave function with
Gaussian k⊥ dependence

Ψ(xi, ki⊥) ∼ exp
[
− 1
λ2

∑
i
k2
i⊥
xi

]
suggests

Fa(x, t) = fa(x)ex̄t/2xλ
2

fa(x)=experimental densities

Adjusting λ2 to provide

〈k2
⊥〉 ≈ (300MeV)2
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Regge-type models for NPDs (ξ = 0 GPDs)

“Regge” improvement:

f(x) ∼ x−α(0)

⇒ F(x, t) ∼ x−α(t)

⇒ F(x, t) = f(x)x−α
′t

Accomodating quark
counting rules:

F(x, t) = f(x)x−α
′t(1−x)|x→1

∼ f(x)eα
′(1−x)2t

Does not change small-x behavior but provides

f(x)|x→1 vs. F (t)|t→∞ interplay:
f(x) ∼ (1− x)n ⇒ F1(t) ∼ t−(n+1)/2

Note: no pQCD involved in these counting rules!

Extra 1/t for F2(t)

can be produced by taking
Ea(x, t) ∼ (1− x)2Fa(x, t)

for “magnetic” NPDs

More general:

Ea(x, t) ∼ (1−x)ηa Fa(x, t)
Fit : ηu = 1.6 , ηd = 1



Regge &
GPD@x = ξ

GPDs=Hybrids

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob model

Truly softened
model

Results

Conclusion

-0.3 -0.2 -0.1 0.1 0.2 0.3
x

-10

-5

5

10

HHx, ΞL

Distribution Amplitudes

DAs may be interpreted as

LC wave functions integrated over transverse momentum

Matrix elements 〈0|O|p〉 of LC operators

For pion (π+):

〈 0 | ψ̄d(−z/2)γ5γ
µψu(z/2) |π+(p) 〉∣∣

z2=0

= ipµfπ

∫ 1

−1

e−iα(pz)/2ϕπ(α) dα

with α = x1 − x2 or x1 = (1 + α)/2, x2 = (1− α)/2
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Models for Meson Distribution Amplitudes

Simple power models, r = 0, 1, 1000

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5
1.0
1.5
2.0
2.5
3.0
3.5

ΦHxL

Functional Form:

ϕr(x) ∼ [x(1− x)]r or φr(α) ∼ (1− α2)r
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HHx, ΞL Hard Electroproduction Processes:
Path to GPDs

Deeply Virtual Photon and Meson
Electroproduction:
Attempt to use perturbative QCD
to extract new information about
hadronic structure

pQCD Factorization

Hard kinematics:

Q2 is large
s ≡ (p+ q)2 is large
Q2/2(pq) ≡ xBj is fixed
t ≡ (p− p′)2 is small
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Deeply Virtual Compton Scattering

Kinematics
Total CM energy s = (q + p)2 = (q′ + p′)2

LARGE: Above resonance region
Initial photon virtuality Q2 = −q2

LARGE (> 1 GeV2)
Invariant momentum transfer t = ∆2 = (p− p′)2

SMALL (� 1GeV2)

Picture in γ∗N CM frame

Virtual photon momentum q = q′ − xBjp has
component −xBjp canceled by momentum transfer ∆

⇒ Momentum transfer ∆ has longitudinal component

∆+ = xBjp
+ , xBj = Q2

2(pq)

“Skewed” Kinematics: ∆+ = ζp+, with ζ = xBj for DVCS
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Parton Picture for DVCS

Nonforward parton distribution
Fζ(X; t) depends on
X : fraction of p+

ζ : skeweness
t : momentum transfer

In forward ∆ = 0 limit

Faζ=0(X, t = 0) = fa(X)

Note: Faζ=0(X, t = 0) comes from Exclusive DVCS Amplitude, while
fa(X) comes from Inclusive DIS Cross Section
Zero skeweness ζ = 0 limit for nonzero t corresponds to
nonforward parton densities

Faζ=0(X, t) = Fa(X, t)

Local limit: relation to form factors

(1− ζ/2)

Z 1

0

Faζ (X, t) dX = F a1 (t)
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Off-forward Parton Distributions

Momentum fractions taken wrt average momentum P = (p+ p′)/2

4 functions of x, ξ, t:

H,E, eH, eE
wrt hadron/parton helicity flip
+/+,−/+,+/−,−/−

Skeweness ξ ≡ ∆+/2P+ is ξ = xBj/(2− xBj)
3 regions:

ξ < x < 1 ∼ quark distribution
−1 < x < −ξ ∼ antiquark distribution
−ξ < x < ξ ∼ distribution amplitude for N → q̄qN ′
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Modeling GPDs

Two approaches are used:

Direct calculation in specific dynamical models:
bag model, chiral soliton model, light-cone formalism , etc.
Phenomenological construction based on relation of GPDs to usual
parton densities fa(x),∆fa(x) and form factors
F1(t), F2(t), GA(t), GP (t)

Formalism of Double Distributions is often used to get
self-consistent phenomenological models

GPD eE(x, ξ; t) is related to pseudoscalar form factor GP (t)
and is dominated for small t by pion pole term 1/(t−m2

π)

Dependence of eE(x, ξ; t) on x is given by pion distribution
amplitude ϕπ(α) taken at α = x/ξ
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Double Distributions

“Superposition” of P+ and r+ momentum fluxes

Connection with OFPDs

Basic relation
between fractions

x = β + ξα

Forward limit ξ = 0, t = 0 gives usual parton densitiesZ 1−|β|

−1+|β|
fa(β, α; t = 0) dα = fa(β)
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Getting GPDs from DDs

DDs live on rhombus |α|+ |β| ≤ 1

“Munich” symmetry:

fa(β, α; t) = fa(β,−α; t)

Converting DDs into GPDs
GPDs H(x, ξ) are obtained
from DDs f(β, α)

by scanning DDs
at ξ-dependent angles
⇒ DD-tomography
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Illustration of DD→GPD conversion

Factorized model for DDs:

(∼ usual parton density in β-direction) ⊗
(∼ distribution amplitude in α-direction)

Toy model for double distribution

f(β, α) = 3[(1− |β|)2 − α2] θ(|α| + |β| ≤ 1)

Corresponds to toy “forward” distribution
f(β) = (1− |β|)3

GPD H(x, ξ) resulting from toy DD

For ξ = 0 reduces to usual parton density

For ξ = 1 has shape like meson distribution
amplitude
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Realistic Model for GPDs based on DDs

DD modeling misses terms invisible in the forward limit:
Meson exchange contributions
D-term, which can be interpreted as σ exchange

Inclusion of D-term induces nontrivial behavior in |x| < ξ region

Meson and D-term terms
DD + D-term model

Profile model for DDs: fa(β, α) = fa(β)ha(β, α)

Normalization∫ 1
−1 dαh(β, α) = 1

Guarantees forward limit∫ 1
−1 dα f(β, α) = f(β)



Regge &
GPD@x = ξ

GPDs=Hybrids

FFs

PDFs

NPDs

DAs

GPDs

DVCS

DDs

Models

Regge

Blob model

Truly softened
model

Results

Conclusion

-0.3 -0.2 -0.1 0.1 0.2 0.3
x

-10

-5

5

10

HHx, ΞL

DD Profile

General form of model profile h(β, α) = Γ(2+2b)

22b+1Γ2(1+b)

[(1−|β|)2−α2]b

(1−|β|)2b+1

Power b is parameter of the model
b =∞ gives h(β, α) = δ(α) and H(x, ξ) = f(x)
Single-Spin Asymmetry

ALU (ϕ) = dσ↑−dσ↓
dσ↑+dσ↓

HERMES Data JLab CLAS Data

Models:
Red: bval = 1 bsea =∞
Green: bval = 1 bsea = 1
Blue: bval =∞ bsea =∞
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Models with Regge behavior of f(β)

Szczepaniak et al: constructed model equivalent to

H(x, ξ) = x

Z
Ω

dβ
f(β)

β(1− |β|) δ(x− β − ξα)

Corresponds to b = 0 flat profile h(β, α) = 1
2(1−|β|)

Regge ansatz f(β) ∼ |β|−a gives singularity at border point x = ξ

H(x, ξ)|x∼ξ ∼
˛̨̨̨
x− ξ
1− ξ

˛̨̨̨−a
Bad : ADVCS ∼

Z 1

−1

dx

x− ξ + iε
H(x, ξ)

Flat profile follows from
hard 1/k2

i behavior of
parton-hadron amplitude
T (p1, p2; k1, k2)

Changing to faster
(1/k2

i )
b+1 fall-off gives

b-profile

No singularities with b ≥ a

b=1 DD with a = 0.5 Regge PDFs

-1.0 -0.5 0.5 1.0
x

-6

-4

-2

2

4

6

8
HHx, ΞL

ξ = 0.1, 0.2, 0.3, 0.4, 0.5
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Early model with Regge behavior of f(β)

Direct model H(x, ξ) =
R

Ω
dβ f(β)hb(β, α) δ(x− β − ξα) with b = 1

H(x, ξ)||x|≥ξ =
1

ξ3

“
1− a

4

”˘ˆ
(2− a)ξ(1− x)(x2−a

+ + x2−a
− )

+ (ξ2 − x)(x2−a
+ − x2−a

− )
˜
θ(x)− (x→ −x)

¯
H(x, ξ)||x|≤ξ =

1

ξ3

“
1− a

4

”˘
x2−a

+ [(2− a)ξ(1− x) + (ξ2 − x)]

− (x→ − x)}

f(β) ∼ β−a(1− β)3

x+ = (x+ ξ)/(1 + ξ)

x− = (x− ξ)/(1− ξ)
∼ |x− ξ|2−a+const
behavior
for x ∼ ξ

b=1 DD with Regge PDFs

ξ = 0.2, 0.3, 0.5, 0.7, 0.9
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Basics of the “Regge-blob” model

p + r p− r

k − rk + r

T (k2
1, k

2
2, s)

Quark-hadron scattering amplitude is modeled by

γµk
µ 1

(m2
1 − (k + r)2)n1+1

1
(m2

2 − (k − r)2)n2+1
T ((p− k)2)

Dirac structure γµkµ is necessary to provide EM gauge
invariance of DVCS amplitude
Modified propagators soften quark-hadron vertices
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Combining with the dispersion relation

Model is based on

H(x, ξ)P+ ∼
Z
k+ δ(x− k+/P+) d4k

[m2
1 − (k + r)2]N1+1[m2

2 − (k − r)2]N2+1

×
Z ∞

0

dσρ(σ)


1

σ − (P − k)2
− 1

σ

ff
First line: modified propagators providing softer quark-hadron
vertices (eventually N1 = N2 ≡ N ) can be obtained by (d/dm2

i )
Ni

Second line: quark-hadron scattering amplitude in (subtracted)
dispersion relation representation

Choosing ρ(σ) to get Regge ∼ sα behavior in s = (P − k)2
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How profile factor appears

In Feynman parameters:

H(x, ξ) ∼
Z ∞

0

dσ ρ(σ)

Z 1

0

(x3P
+ + (x2 − x1)r+)/P+

(x3σ + x1m2
1 + x2m2

2)n1+n2+1
xn1

1 xn2
2 [dx]

δ (x− x3 − (x2 − x1)ξ)− δ (x− (x2 − x1)ξ)

(x1 + x2)2

ff
[dx] = dx1dx2dx3δ(1− x1 − x2 − x3)

In DD representation we should have βP+ + αr+ , which gives

x1 = (1− β − α)/2 , x2 = (1− β + α)/2

For equal Ni = N : profile factor

(x1x2)N = [(1− β)2 − α2]N/22N

Note: taking m1 = m2 = m before differentation gives (x1 + x2)2N

after it, i.e. (1− β)2N ⇒ flat profile in α direction!
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Criticism of “Indiana model”

Little bit of algebra:„
d

dm2

«2
1

(m2 − k2
1)(m2 − k2

2)
=

1

(m2 − k2
1)3(m2 − k2

2)

+
2

(m2 − k2
1)2(m2 − k2

2)2
+

1

(m2 − k2
1)(m2 − k2

2)3

Note: two terms have unmodified propagators⇒ no softening of
one of the quark-hadron vertices

But quark-nucleon vertex cannot be pointlike!

More formal objection: factorization proofs through operator product
expansion imply QCD equation of motion γµDµψq = 0, while
pointlike qN vertex corresponds to γµDµψq = ΨN

Stick to model with both quark propagators modified
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Softened model

In GPD variables βP+ + αr+ = xP+, so

H(x, ξ) ∼ x

22n+1

Z ∞
0

dσ ρ(σ)

Z 1

0

dβ

Z 1−β

−1+β

dα
[(1− β)2 − α2]n

(βσ + (1− β)m2)2n+1
δ (x− β − αξ)− δ (x− αξ)

(1− β)2

ff
Usual (forward) parton distribution corresponds to ξ = 0

H(x, ξ = 0) =
x

22n+1

Z ∞
0

dσ ρ(σ)

Z 1

0

dβ

Z 1−β

−1+β

[(1− β)2 − α2]n dα

(βσ + (1− β)m2)2n+1

×

δ (x− β)− δ (x)

(1− β)2

ff
Note: xδ(x) = 0, thus

f(x) =
(n!)2

(2n+ 1)!
x (1− x)(2n+1

Z ∞
0

dσ ρ(σ)

(xσ + (1− x)m2)2n+1
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Softened model, contd.

Substituting σ-integral by forward distribution gives for GPD

H(x, ξ) =
x

22n+1

(2n+ 1)!

(n!)2

Z 1

0

dβ

Z 1−β

−1+β

dα
[(1− β)2 − α2]n

(1− β)2n+1

f(β)

β

×

δ (x− β − αξ)− δ (x− αξ)

(1− β)2

ff
Normalized profile function:

hn(β, α) ≡ 1

22n+1

(2n+ 1)!

(n!)2

[(1− β)2 − α2]n

(1− β)2n+1

Result:

H(x, ξ)

x
=

Z 1

0

dβ

Z 1−β

−1+β

dα
f(β)

β
hn(β, α)

×

δ (x− β − αξ)− δ (x− αξ)

(1− β)2

ff
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New version of DD anasatz

Regularized DD ansatz:

H(x, ξ)

x
=

Z 1

0

dβ

Z 1−β

−1+β

dα δ (x− β − αξ)

×

(
f(β, α)− δ(β)

Z 1−|α|

0

dγ
f(γ, α)

(1− γ)2

)
with

f(β, α) = f(β)hn(β, α)/β

This representation includes D-term

D(α) = α

Z 1−|α|

0

dβ
f(β)

β
h(β, α)


1− 1

(1− β)2

ff
Total double distribution

F (β, α) = [f(β, α]+ + δ(β)D(α)

Usual “plus” prescription

[f(β, α)]+ ≡ f(β, α)− δ(β)

Z 1−|α|

0

dγ f(γ, α)
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Results for n = 1 profile ∼ [(1− β)2 − α2]

H(x, ξ); ξ = 0.05, 0.1, 0.15, 0.2, 0.25
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Comparison of GPD and D-term
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Results for n = 2 profile ∼ [(1− β)2 − α2]2

H(x, ξ); ξ = 0.1, 0.3, 0.5, 0.7, 0.9
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First derivative dH(x, ξ)/dx is continuous at x = ξ
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Conclusion

Happy Birthday Gary!
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